

Abs

STOCHASTIC MODELLING OF DEFORESTATION EFFECT IN NIGERIA: A COMPARATIVE STUDY

L. M. Kwaghkor

Department of Statistics, Nacabs Polytechnic, Akwanga, Nasarawa State, Nigeria

matlubem@gmail.com

	Received: June 11, 2020 Accepted: October 02, 2020
ostract:	Deforestation is a key problem for many countries including Nigeria. About 3500 to 4000 square Kilometre of the
	Nigeria's land is lost to deforestation each year which calls for an urgent attention. An earlier study used a stochastic model known as the Interval Transition probability of a Semi-Markov Process to study the long-run
	effect of deforestation on Nigeria's total land area with the results: Nigeria will loss 0.042, 0.272, 0.383, 0.408, and
	0.409% of her total land area in the 20 th , 200 th , 500 th , 1000 th and 1120 th years, respectively beginning from 2017.
	The limitation of this study is that in computing the model parameters, a history of data for land lost due to
	deforestation in Nigeria is needed which is not readily available. Hence, the motivation for this research. In this
	study, a modified exponential distribution is proposed to study the long run effect of deforestation on the Nigeria's

study, a modified exponential distribution is proposed to study the long run effect of deforestation on the Nigeria's total land area that does not depend on the history of data but on the current information. The result indicates that 7.783, 55.525, 86.809, 98.260 and 98.930% of the Nigeria's land will be lost to deforestation in the 20th, 200th, 500th, 1000th and 1120th, respectively from 2017. Agreeing with the result of the earlier study is that, if nothing is done to stop or control deforestation, Nigeria will loss almost her entire land area in about 1120 years from 2017. The modified exponential distribution is recommended since its prediction depends on the current information and not on the history.

Keywords: Deforestation, exponential distribution, semi-Markov model, stochastic modelling, Weibull distribution

Introduction

Deforestation results from the removal of trees without sufficient replacement, which leads to reduction in habitat, biodiversity as well as wood and quality of life. Deforestation can denote activities of clearing the forest for fuel, commercial purpose etc (Mfon Jr. *et al.*, 2014; Kwaghkor *et al.*, 2018). Forests are not only one of the most valuable natural resources but also crucial to ensure decent living conditions for all plants, animals, and humans. The rate at which our planet is being stripped of its forest cover, however, is alarming (Makki, 2009). According to the United Nation's Food and Agriculture Organization (FAO), over 30 million acres (or 13 million hectares) of forests are destroyed by human activity every year worldwide, while Olasupo (2016) reported that Nigeria loses about 3500 to 4000 Square Kilometre of land yearly to deforestation.

Several studies have modelled and are still trying to Model deforestation effects. However, the application of these models are constrained in developing countries (like Nigeria) by the lack of standard ecological and socio-economic data (Lambin, 1994). Kwaghkor et al. (2018) used the Interval Transition Probability of Semi - Markov process(where the stay in a state before transition is described by a probability distribution: in this case a Weibull distribution) proposed by Howard (1971) to give a good prediction of the effect of deforestation on a long-run if the rate of deforestation at some constant intervals (yearly) is known. The limitation of their study is that in computing the parameters of the Weibull distribution, a history of data for land lost due to deforestation in Nigeria is needed which is not readily available. This is the motivation for this research. In this study, a modified exponential distribution is proposed to study the long-run effect of deforestation on the Nigeria's total land area that does not depend on the history of land lost due to deforestation but on the current information.

The remaining part of this research work shall be discussed under the following sub-heading: The Model, Results, Discussion and Conclusion.

The Model

Here, the model equation based on the Weibull distribution and the modified exponential distribution model, the analysis and comparison of the results will be presented and discussed.

The interval transition probability from state i to state j in the interval (0, t): The model equation

 $\Phi_{ij}(t)$, defined as the probability that the process will occupy state *j* at time *t* if it entered state *i* at time zero (called the interval transition probability from state *i* to state *j* in the interval (0, *t*)) is given by Howard (1971) as

$$\Phi_{ij}(t) = \delta_{ij}\overline{w_i}(t) + \sum_{k=0}^{N} P_{ik} \int_{0}^{t} h_{ik}(m) \Phi_{kj}(t-m) dm$$
(1)
$$\delta_{ij} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases} \quad i, j = 1, 2, 3, ...$$

Equation (1) is called the Interval Transition Probability from state *i* to state *j* in the interval (0, *t*) assuming that the process could have made its first transition from state *i* to some state *k* at a time *m*, $0 < m \le t$, and then by some succession of transitions have made its way to state *j* at time *t*. The quantity δ_{ij} ensures that the term in which it appears occurs only when i = j.

In practical sense, $\Phi_{ij}(t)$ is referred as the effect of deforestation at a particular time t (in years) and P_{ik} is the average rate of land lost per year due to deforestation (Kwaghkor *et al.*, 2018).

The transition process from forestation

A possible transition from forestation as a result of deforestation is presented in Fig. 1.

Fig. 1: Effects of deforestation

 p_{12} : the average rate of Nigeria land lost due to deforestation per year

$$\Phi_{12}(t) = \delta_{12}\overline{w_1}(t) + \sum_{k=1}^{\infty} P_{1k} \int_0^{\infty} h_{1k}(m) dm \Phi_{k2}(t-m)$$
(2)

Since the process is moving from state 1 to state 2 without branching to any state, k = 2, m = t and $\delta_{12} = 0$, equation (2) now becomes

$$\Phi_{12}(t) = P_{12} \int_{0}^{0} h_{12}(n) dn \tag{3}$$

Based on the assumption that the process follows a Weibull Distribution, equation (3) now becomes

$$\Phi_{12}(t) = P_{12} \left[1 - \exp\left(-\frac{t}{\alpha}\right)^{\beta} \right]$$
(4)

Equation (4) describes the effect of deforestation at a particular time t (in years) and P_{12} is the average rate of land lost per year due to deforestation (Kwaghkor *et al.*, 2018). *Estimation of parameters*

Estimation of parameters

The parameters α and β are obtained below using (Dubey, 1967; Marks, 2005; Kwaghkor *et al.*, 2018).

$$\beta = \frac{\ln[-\ln(1-p_1)] - \ln[-\ln(1-p_2)]}{\ln x_{p_1} - \ln x_{p_2}}$$
(5)

$$\alpha = exp\left[\ln x_{p_1} - \ln(-\ln(1-p_1))/\beta\right]$$
(6)
or

$$\alpha = \exp\left[\ln x_{p_2} - \ln(-\ln(1-p_2))/\beta\right]$$
(7)
or

$$\alpha = exp\left[\frac{1}{2}\sum_{i=1}^{2} \{\ln x_{p_i} - \ln(-\ln(1-p_i))/\beta\}\right]$$
(8)

Note that the estimation of β and α only requires two percentiles from a sample. Kwaghkor *et al.*, 2018 used the 25th and the 75th percentiles in their work.

The modified exponential distribution model

This modified exponential distribution was first proposed by Kwaghkor *et al.* (2019) to study long term unemployment rate. The modified exponential distribution was presented as

 $f(t; \lambda) = \begin{cases} (1 - \exp(-J/n))\exp(-(1 - \exp(-J/n))t), & t > 0\\ 0, & \text{otherwise} \end{cases}$ where $\lambda = 1 - \exp(-J/n), J$ =Number of persons entering

unemployment state at present and n = Number of persons from the source of entering unemployment state at present.

The Cumulative Distribution Function (CDF) of the modified exponential distribution written as the probability of lifetime being less than some value, t, is

 $F(t;\lambda) = P(T \le t) = 1$

$$-\exp[-(1-\exp(-J/n))t] \quad (10)$$

Equation (10) was used to give a probable unemployment rate if J (Number of persons entering unemployment state at present) and n (Number of persons from the source of entering unemployment state at present) are known. In this study, J and n are redefined as follows

J = Average land lost per year due to deforestation in Nigeria, and

n = Total land area in Nigeria.

Year

1 2

3

4

5

Results and Discussion

Results based on the interval transition probability from state i to state j in the interval (0, t)

The 25^{th} and 75^{th} percentiles using the data in Table 1 and TheWorldFactbook (2016); the values of parameters of the Weibull distribution using equations (5) and (6) are presented in Table 2.

Table 1: Average land lost in Nigeria per year due to deforestation (formed from Olasupo (2016))

 $\frac{\text{Land lost } (Km^2)}{3520}$

3600

4000

3900

3700

6	3620	_
7	2710	
8	3810	
9	3850	
10	3540	
11	4000	
12	3910	
13	3820	
14	3630	
15	3650	
16	3750	
17	3920	
18	3900	
19	3990	
20	3770	
1 1 .	NI: 000.740	2

Total land area in Nigeria is 923,768 Km² (TheWorldFactbook, 2016).

Parameter	Value	
p_1	0.25	
p_2	0.75	
x_{p_1}	3625	
x_{p_2}	3905	
p_{12}	0.0041	
β	21	
α	3845	

The Table generated from fitting the values of Table 2 to equation (4) is presented in Table 4 and the graph obtained from the table is presented in Fig. 2.

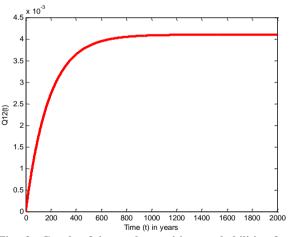


Fig. 2: Graph of interval transition probabilities from forestation

Result based on the modified exponential distribution From Olasupo (2016) and TheWorldFactbook (2016); the parameter values for the modified exponential distribution are given in Table 3.

 Table 3: Parameter values for deforestation using the modified exponential distribution

Parameter Value		Source		
J	$3,750 \ km^2$	Olasupo (2016)		
n	$923,768 km^2$	TheWorldFactbook (2016)		

920

The Table generated from fitting the values of Table 3 to equation (10) is presented in Table 5 and the graph obtained from the Table is presented in Fig. 3.

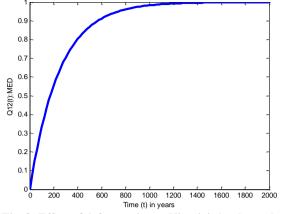


Fig. 3: Effect of deforestation to Nigeria's land area by the modified exponential distribution

Table 4 shows the interval transition probabilities from forestation due to deforestation using the Interval Transition probability of a Semi-Markov model whose stay in the state is described by the Weibull distribution. This is describing the gradual loss of Nigeria's land due to deforestation. Converting the result to percentage, it can be seen that Nigeria will loss 0.042, 0.272, 0.383, 0.408, and 0.409% in the 20th, 200th, 500th, 100th and 1120th years, respectively beginning from 2017. It can also be seen from both Table 4 and Fig. 2 that from the 1120th year upward, the interval transition probabilities converges very slowly which can be negligible from the figure. The slowness is due to the nature of the Weibull Distribution. This result simply indicates that if Nigeria continues to loss about $3500 - 4000 \ km^2$ of her land each year (due to deforestation); it will take about 1120 years to loss her total land area completely if nothing is done.

Table 4: Values of interval transition probability from

able 4: values of In	terval transition probability from	1400
	forestation	1420
t	$\Phi_{12}(t)$	1440
0	0	1460
20	0.000424260	1480
40	0.000804620	1500
60	0.001145620	1520
80	0.001451334	1540
100	0.001725413	1560
120	0.001971132	1580
140	0.002191423	1600
160	0.002388919	1620
180	0.002565979	1640
200	0.002724717	1660
220	0.002867029	1680
240	0.002994614	1700
260	0.003108998	1720
280	0.003211545	1740
300	0.003303481	1760
320	0.003385903	1780
340	0.003459797	1800
360	0.003526044	1820
380	0.003585436	1840
400	0.003638682	1860
420	0.003686418	1880
440	0.003729215	1900
460	0.003767583	1920
480	0.003801981	1940
500	0.003832819	1960
520	0.003860467	1980
540	0.003885253	2000
560	0.003907475	

580	0.003927397
600	0.003945258
620	0.003961270
640 660	0.003975625 0.003988495
680 680	0.003988493
700	0.004010378
720	0.004019652
740	0.004027966
760	0.004035420
780	0.004042103
800	0.004048094
820	0.004053465
840	0.004058280
860 880	0.004062597 0.004066467
900	0.004069937
900	0.004073048
940	0.004075837
960	0.004078337
980	0.004080579
1000	0.004082588
1020	0.004084390
1040	0.004086005
1060	0.004087453
1080 1100	0.004088752
1120	0.004089916 0.004090959
1120	0.004090939
1160	0.004092733
1180	0.004093485
1200	0.004094159
1220	0.004094764
1240	0.004095305
1260	0.004095791
1280	0.004096227
1300	0.004096617
1320 1340	0.004096967 0.004097281
1360	0.004097281
1380	0.004097814
1400	0.004098040
1420	0.004098243
1440	0.004098425
1460	0.004098588
1480	0.004098734
1500	0.004098865
1520	0.004098982 0.004099088
1540 1560	0.004099088
1580	0.004099182
1600	0.004099342
1620	0.004099410
1640	0.004099471
1660	0.004099526
1680	0.004099575
1700	0.004099619
1720	0.004099658
1740	0.004099694
1760 1780	0.004099725 0.004099754
1800	0.004099734
1820	0.004099779
1840	0.004099822
1860	0.004099841
1880	0.004099857
1900	0.004099872
1920	0.004099885
1940	0.004099897
1960	0.004099908
1980	0.004099917
2000	0.004099926

1060 0.986353965 98.63539651

911162.2

Table 5: Va	alues of the	effect of	f deforestation	based	on	the
modified ex	ponential d	istributi	on			

modified exponential distribution		1000	0.980353905	98.03539051	911162.2		
t	$\Phi(t)_{12}$	% land loss	Land loss (km^2)	1080	0.987416023	98.74160229	912143.3
0	0	0	0	1100	0.988395422	98.83954217	913048.1
20	0.077829037	7.7829037	71895.97	1120	0.989298595	98.92985949	913882.4
40	0.149600716	14.9600716	138196.4	1140	0.990131475	99.01314749	914651.8
60	0.215786474	21.5786474	199336.6	1160	0.990899533	99.08995327	915361.3
80	0.276821058	27.6821058	255718.4	1180	0.991607813	99.16078133	916015.6
100	0.333105379	33.3105379	307712.1	1200	0.992260969	99.22609692	916618.9
120	0.385009145	38.50091451	355659.1	1220	0.99286329	99.28632905	917175.3
140	0.432873291	43.28732913	399874.5	1240	0.993418734	99.34187337	917688.4
160	0.477012217	47.70122172	440648.6	1260	0.993930947	99.39309473	918161.6
180	0.517715853	51.7715853	478249.3	1280	0.994403296	99.44032959	918597.9
200	0.555251564	55.52515639	512923.6	1300	0.994838882	99.4838882	919000.3
220	0.589865907	58.98659066	544899.2	1320	0.995240567	99.52405668	919371.4
240	0.621786248	62.17862483	574386.2	1340	0.995610989	99.56109889	919713.6
260	0.651222261	65.12222606	601578.3	1360	0.995952581	99.59525814	920029.1
280	0.678367296	67.83672963	626654	1380	0.996267588	99.62675881	920320.1
300	0.70339966	70.33996601	649778.1	1400	0.996558078	99.65580781	920588.5
320	0.726483779	72.64837791	671102.5			99.68259596	920835.9
340	0.747771283	74.77712833	690767.2	1420	0.99682596		
360 380	0.767402002 0.78550488	76.74020015 78.55048798	708901.4 725624.3	1440	0.997072992	99.70729921	921064.1
400	0.802198829	80.21988286	723024.5	1460	0.997300798	99.73007983	921274.6
420	0.817593503	81.75935034	755266.7	1480	0.997510875	99.75108746	921468.6
440	0.831790025	83.17900254	768381	1500	0.997704601	99.77046008	921647.6
460	0.844881646	84.48816459	780474.6	1520	0.99788325	99.78832495	921812.6
480	0.856954358	85.6954358	791627	1540	0.998047994	99.80479942	921964.8
500	0.868087463	86.80874627	801911.4	1560	0.998199917	99.81999169	922105.1
520	0.878354088	87.83540885	811395.4	1580	0.998340016	99.83400156	922234.6
540	0.887821673	88.78216727	820141.3	1600	0.998469211	99.84692106	922353.9
560	0.896552404	89.65524039	828206.4	1620	0.99858835	99.85883505	922464
580	0.904603631	90.46036308	835643.9				
600	0.912028238	91.20282384	842502.5	1640	0.998698218	99.86982178	922565.5
620	0.918874996	91.88749959	848827.3	1660	0.998799534	99.87995343	922659
640	0.925188877	92.51888769	854659.9	1680	0.998892965	99.88929654	922745.4
660	0.931011355	93.10113546	860038.5	1700	0.998979125	99.89791248	922824.9
680 700	0.936380674	93.63806745	864998.5	1720	0.999058579	99.90585785	922898.3
700 720	0.941332105 0.945898171	94.13321053 94.58981711	869572.5 873790.5	1740	0.999131848	99.91318485	922966
740	0.950108864	95.01088644	877680.2	1760	0.999199416	99.91994159	923028.4
760	0.953991843	95.39918434	881267.1	1780	0.999261725	99.92617246	923086
780	0.957572614	95.7572614	884574.9	1800	0.999319184	99.93191838	923139.1
800	0.960874697	96.08746966	887625.3	1820	0.999372171	99.93721711	923188
820	0.963919781	96.39197813	890438.2	1840	0.999421034	99.94210344	923233.2
840	0.96672787	96.672787	893032.3		0.999466095		
860	0.969317408	96.93174078	895424.4	1860		99.94660947	923274.8
880	0.971705404	97.17054045	897630.4	1880	0.999507648	99.95076481	923313.2
900	0.973907546	97.39075456	899664.6	1900	0.999545967	99.95459674	923348.6
920	0.975938296	97.59382962	901540.6	1920	0.999581304	99.95813043	923381.2
940	0.977810995	97.78109955	903270.5	1940	0.999613891	99.9613891	923411.3
960	0.979537944	97.95379443	904865.8	1960	0.999643941	99.96439415	923439.1
980	0.981130486	98.11304864	906336.9	1980	0.999671653	99.96716532	923464.7
1000	0.982599082	98.25990825	907693.6	2000	0.999697208	99.96972081	923488.3
1020	0.983953379	98.39533792	908944.6				
1040	0.985202272	98.52022722	910098.3				

Figure 3 and Table 5 are showing the transition probabilities of moving from forestation due to deforestation using the modified exponential distribution. This is also describing the gradual loss of Nigeria's land due to deforestation. Converting the transition probabilities of Table 5 to percentage, it can be seen that Nigeria will loss about 7.783%, (71895.97 km²) 55.525% (512923.60 km²), 86.809% (801911.40 km²), 98.260% (907693.60 km²) and 98.930% (913882.40 km²) of her land to deforestation in the 20th, 200th, 500th, 1000th and 1120th, respectively beginning from 2017. Agreeing with the result of Kwaghkor et al. (2018) is that if nothing is done to stop or control deforestation, Nigeria may loss almost her entire land area in about 1120 years. Also to note is that the percentage loss is moving gradually from zero percent to hundred percent by the modified exponential distribution which seem to be more realistic in nature than the result based on the Interval Transition probability: making the modified exponential distribution a more better model for studying decay processes in real life situations. The modified exponential distribution is also recommended since its prediction depends on the current information and not on the history.

Conclusion

In this paper, a modified exponential distribution was proposed to study the effect of deforestation on the Nigeria's land area. The aim of the paper is to compare the result with that of an earlier work by Kwaghkor *et al.* (2018) which uses the interval transition probability of a Semi-Markov model to study the effect of deforestation on the Nigeria's land. The results agreed in the fact that if nothing is done to stop or reduce deforestation, Nigeria will loss almost her entire land area in about 1120 years. Also to note is that the percentage loss is moving gradually from zero percent to hundred percent by the modified exponential distribution which seem to be more realistic in nature than the result based on the Interval Transition probability of a Semi-Markov model: making the modified exponential distribution a more better model for studying decay processes in real life situations.

Conflict of Interest

Author has declared that there is no conflict of interest reported in this work.

References

- Dubey SD 1967. Some percentile estimators for Weibull parameters. *Technometrics*, 9(1): 119-129.
- Howard RA 1971. Dynamic Probabilistic Systems, *John Wiley*, New York. (1&2).
- Kwaghkor LM, Onah ES & Bassi IG 2018. Stochastic modelling of the effect of deforestation in Nigeria. J. Nig. Assoc. of Math. Phys., 45: 379 – 386.
- Kwaghkor LM, Onah ES, Aboiyar T & Ikughur JA 2019. A modified exponential distribution for predicting long term unemployment rate. *Int. J. Math. Anal. and Optimization: Theory and Applic.*, 2: 599-609.
- Lambin EF 1994. Modelling Deforestation Process: A Review. *European Commission Joint Research Centre*, Luxembourg, 132pp.
- Makki SS 2009. Deforestation: Disastrous consequences for the climate change and for food security. Retrieved from blogs.worldbank.org/climate.change/deforestationdisastrous-consequences-climate-and-food-security
- Marks NB 2005. Estimation of Weibull parameters from common percentiles. J. Appl. Stat., 32(1): 17-24.
- Mfon P, Akintoye OA, Mfon G, Olorundami T, Ukata SU & Akintoye TA 2014. Challenges of deforestation in Nigeria and the Millennium Development Goals. *Int. J. Envt. and Bioener.*, 9(2): 76-94.
- Olasupo F 2016. In Homes and Property, News Comments. Retrieved from <u>http://www.vanguardngr.com/2016/04/</u> <u>nigeria-loses-350000-400000-hectares-land-per-year-</u> <u>deforestation-report/</u>
- TheWorldFactbook 2016. Central Intelligence Agency: Field Listing-Nigeria-Area. <u>https://www.cia.gov/library</u> /publications/the-world-factbook/fields/